

Estudio de Factibilidad para la Construcción y Mejoramiento de la Carretera Central

Tramo: Autopista Puente Los Ángeles - Ricardo Palma

Ing. Daniel Osores Padilla

TÚNEL LOS ÁNGELES

ÍNDICE

- . INTRODUCCIÓN
 - □ 1.1 GENERALIDADES
 - ► 1.2 UBICACIÓN
 - □ 1.3 CARTOGRAFÍA DE LA ZONA DE ESTUDIO
 - □ 1.4 TRÁFICO
- . ANTECEDENTES
 - 2.1 ESTUDIO DE PERFIL
- CARACTERÍSTICAS DEL PROYECTO
 - □ 3.1 INICIO DEL PROYECTO
 - □ 3.2 FINAL DEL PROYECTO
 - □ 3.3 ALTERNATIVAS DE TRAZO
 - 3.4 ALTERNATIVA SELECCIONADA-TRAZO FINAL
 - ≥ 3.5 TÚNEL

V. GEOLOGÍA

- 4.1 GENERALIDADES
- 4.2 PERFIL LONGITUDINAL GEOLÓGICO
- 4.3 EVALUACIÓN GEOTÉCNICA
- 4.4 TIPO DE SOSTENIMIENTO
- 4.5 MÉTODO DE CONSTRUCCIÓN
- → 4.6 VENTILACIÓN
- V. EVALUACIÓN DEL PROYECTO

1

INTRODUCCIÓN

1.1 GENERALIDADES

PROVIAS NACIONAL, a través de la Unidad Gerencial de Estudios (UGE) otorga la Buena Pro a CISAC para elaborar el Estudio de Preinversión.

1.2 UBICACIÓN

El desarrollo del Estudio encuentra ubicado:

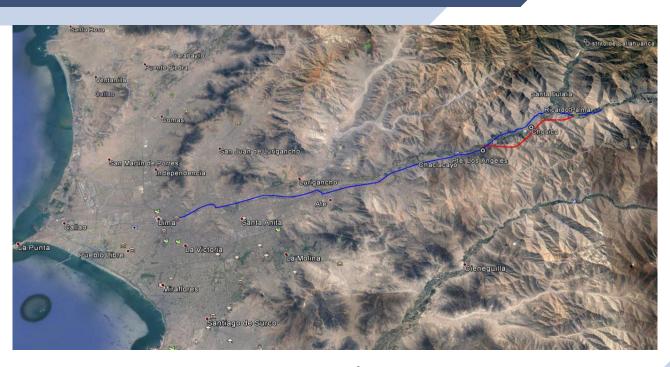
Distritos : Lurigancho-Chosica, Santa Eulalia

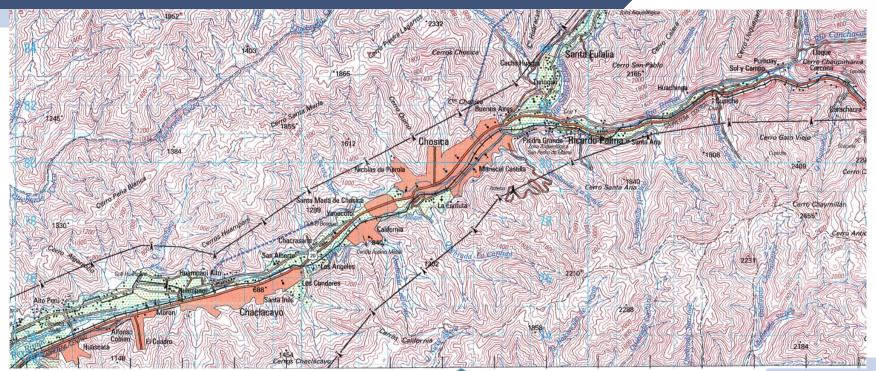
y Ricardo Palma

Provincias: Lima y Huarochirí

Región : Lima

LOCALIZACIÓN PROVINCIAL


LOCALIZACIÓN DISTRITAL



1.3 CARTOGRAFÍA DE LA ZONA

1.4 TRÁFICO

Tráfico Generado

Vehiculo	2017	2018	2019	2037
Automóvil	3734	3910	4095	16864
Station Wagon	1237	1295	1357	5549
Pick Up	892	934	978	3694
Panel	122	128	134	322
C. Rural	685	717	751	3115
Microbus	997	1044	1093	2633
Bus 2E	99	103	107	455
Bus 3E	595	620	645	1404
Camion 2E	736	776	819	3557
Camion 3E	559	590	622	2846
Camión 4E	182	192	203	558
Semitrayler 2S1/2S2	24	25	27	74
Semitrayler 2S3	44	46	49	134
Semitrayler 3S1/3S2	64	68	71	196
Semitrayler >=3S3	1204	1270	1340	5766
Trayler 2T2	6	6	7	19
Trayler 2T3	9	9	10	27
Trayler 3T2	11	12	12	34
Trayler >=3T3	36	38	40	110
TOTAL	11236	11783	12360	47357

Tráfico Total Proyectado

Clase de vehículo	Tasa crecimiento (%)
Vehículo liviano	4.72
Vehículo Ómnibus	4.13
Vehículo Pesado (camión)	5.50

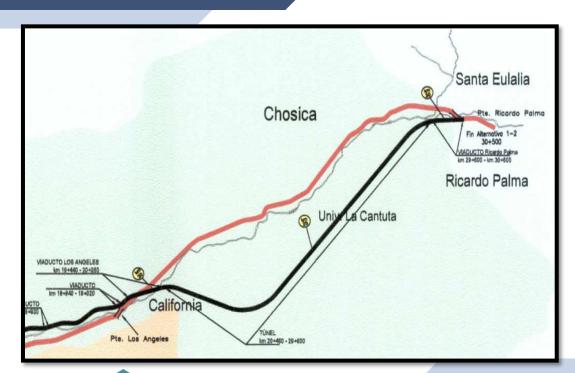
Tráfico Desviado

Se obtiene un tráfico desviado total de 7,236 vehículos que harán uso de la ruta en estudio.

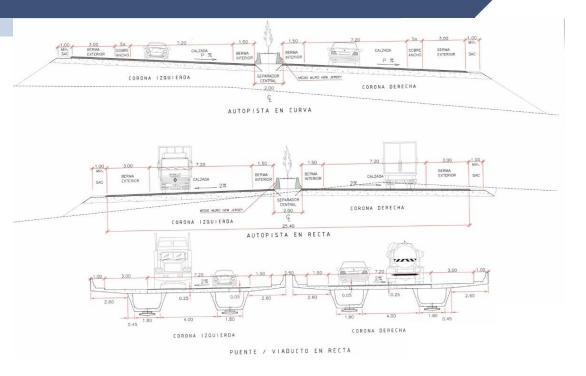
Los viajes provienen de las zonas del departamento Junín, con distritos de Huancayo, Jauja, La Oroya, Chanchamayo. Además del departamento de Pasco y Huánuco.

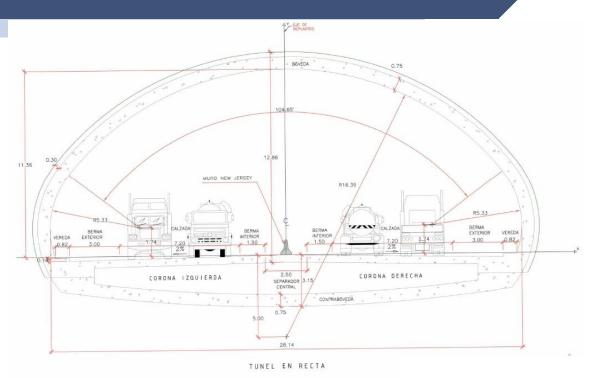
Problema central: "Inadecuadas condiciones de transitabilidad y bajo nivel de servicio en la Carretera Central"

2


ANTECEDENTES

Estudio de Preinversión a Nivel de Perfil para la "Construcción y Mejoramiento de la Carretera Central, Tramo: Autopista Ramiro Prialé - Ricardo Palma", elaborado en el año 2012 por OCTSAC.





SECCIÓN TÚNEL

3

CARACTERÍSTICAS DEL PROYECTO

TUNEL

PROYECTO

 El proyecto considera los siguientes componentes:

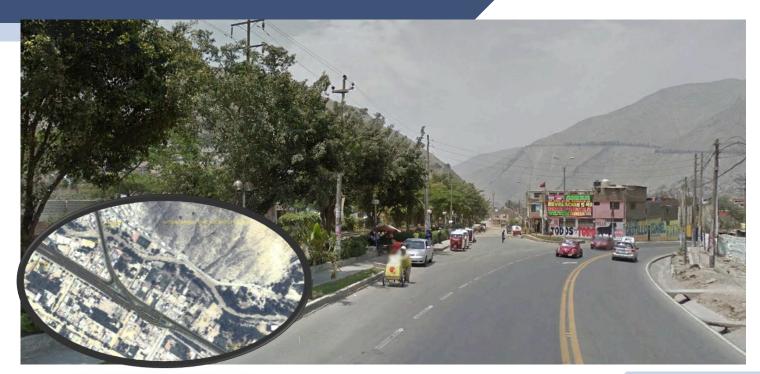
COMPONENTES	LONGITUD (m)
Eje 01	13,215.60
Eje 02	13,270.00
Túnel de Servicio, Túneles de Conexiones	3,080.98
Viaducto (2)	829.00
Portales (2 Entrada y 2 Salida)	41.00
Accesos (2 Entrada y 2 Salida)	1,926.57
Ramales (2 Entrada y 4 Salida)	3, 186.26
Total	35 549.41

- Longitud de:
- Eje 01 es 14.72 km
- Eje 02 es 14.56 km

Intersección Inicial: Enlazar a proyecto en ejecución.

INICIO: PROYECTO RAMIRO PRIALE - RUTAS DE

LIMA

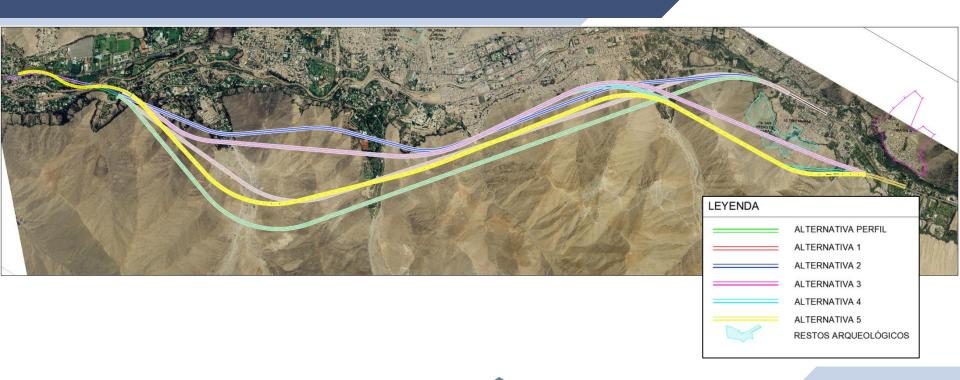


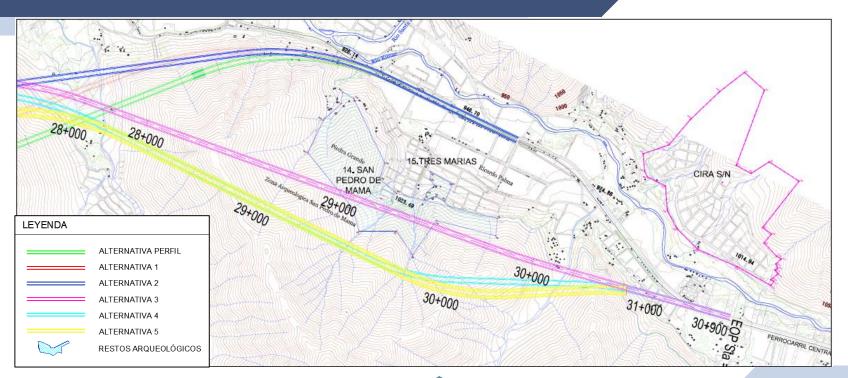
OFL PERU

3.2 INTERSECCIÓN FINAL DEL PROYECTO

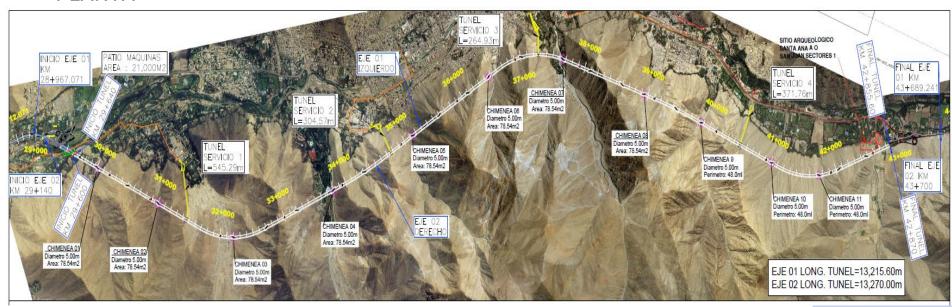
Intersección
Final: Problemas
de falta de
espacio,
interferencia con
línea de tren.

ALTERNATIVA FINAL: EMPALME A LA CARRETERA CENTRAL (DEVIANDES)



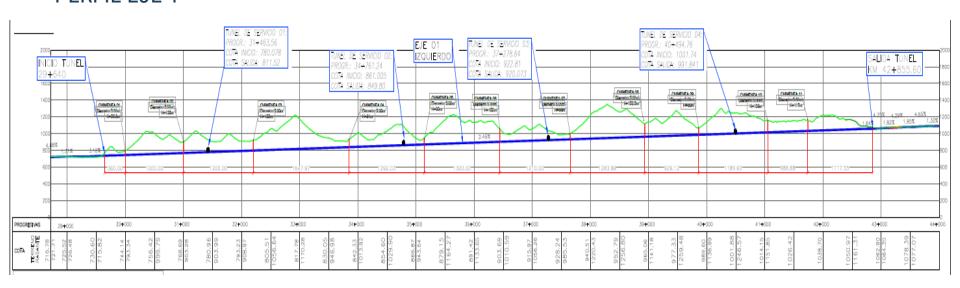


3.5 TÚNEL

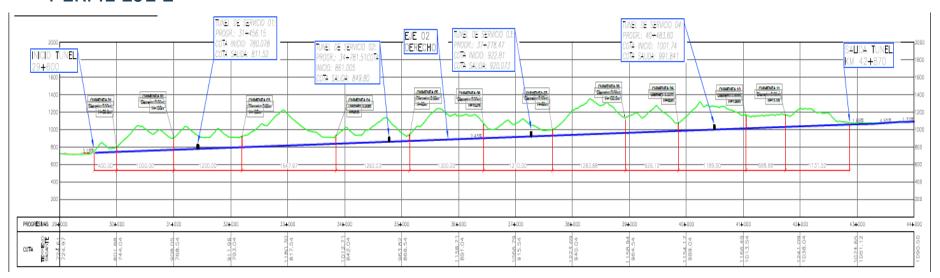


PLANTA TÚNEL

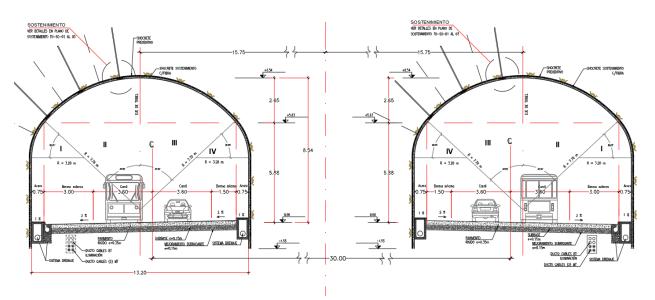
PLANTA



PERFIL EJE 1



PERFIL EJE 2



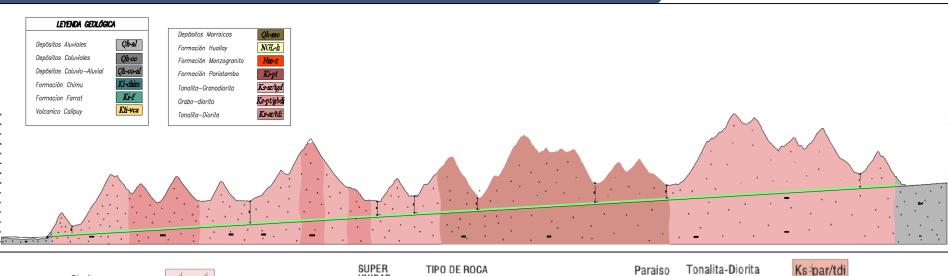
SECCION TIPO TUNELES
ESCALA 1/100

EJE 01 IZQUIERDA KM 29+640 AL KM 42+640.00 EJE 02 DERECHA KM 29+600 AL KM 42+640.00

DATOS

- Contempla:
- Túneles de interconexión: Se proyectan cada 1000 m.
- Túneles de servicio: 4 túneles.

GEOLOGÍA Y GEOTECNIA



- El trazo de la variante se encuentra en el comienzo de las estribaciones de la Cordillera Occidental de los Andes, al este de Lima.
- Unidades geomorfológicas: Planicie Costanera y Estribaciones Andinas.
- El área de estudio comprendida tiene quebradas que se reactivan geo dinámicamente en épocas de precipitación pluvial.

4.2 PERFIL LONGITUDINAL GEOLÓGICO

Diorita

Ts_di

Ts_di

Ts-a

Ts-r

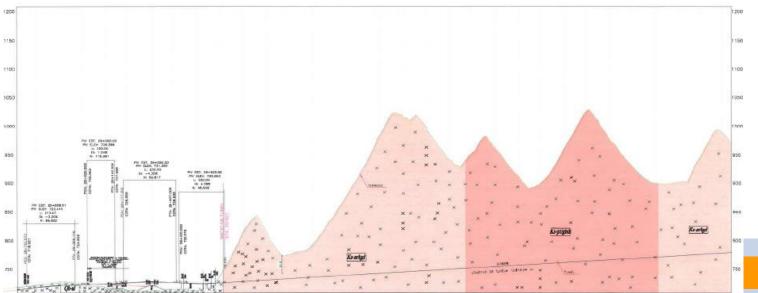
SUPER UNIDAD
Granitos
Granitos
Ks-sr/gr
Santa Rosa
Tonalita-Granodiorita
Tonalita-Diorita
Faccho
Tonalita-Diorita
Ks_pa/tdi

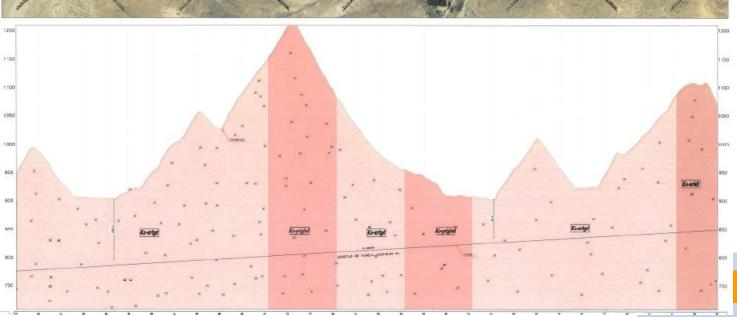
Paraiso Tonalita-Diori Patap Gabro-diorita Dolerita

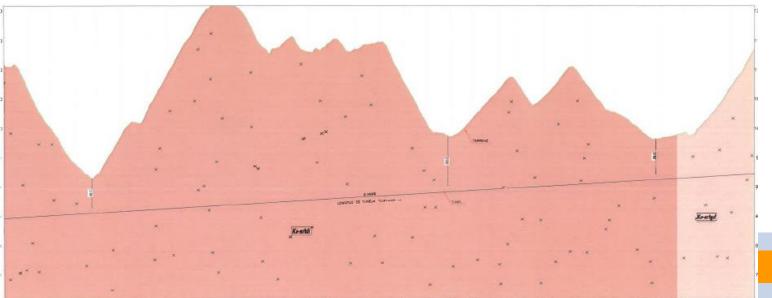
Andesita

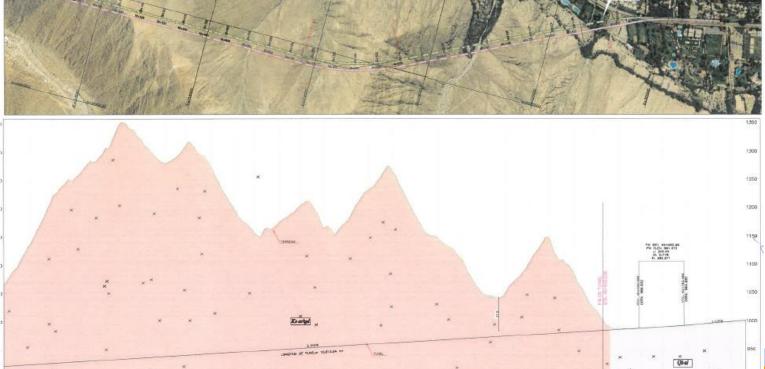
Kms-do

Ks-pt/qbd




SUPER UNIDAD	TIPO DE ROCA	
	Granitos	Ks- <u>s</u> r/gr
Santa Rosa	Tonalita-Granodiorita	Kŝ-sr/tgd
	Tonalita-Diorita	Ks-sr/tdi
Paccho	Tonalita-Diorita	Ks _⊊ pa/tdi
Paraiso	Tonalita-Diorita	Ks-par/tdi
Patap	Gabro-diorita	Ks-pt/gbdi
	Dolerita	Kms-do
	Andesita	VKs-an





4.3. Evaluación geotécnica

Se establecieron 13 estaciones geomecánicas

Tabla Nº 11. Cálculo del Índice R.Q.D por estación geomecánica

ESTACIONES GEOMECÁNICAS		Índice R.Q.D	Descripción	
Estación geomecánica Nº 1	14	69	Regular	
Estación geomecánica Nº 2	15	66	Regular	
Estación geomecánica Nº 3	15	66	Regular	
Estación geomecánica Nº 4	17	59	Regular	
Estación geomecánica Nº 5	20	49	Pobre	
Estación geomecánica Nº 6	13	72	Regular	
Estación geomecánica Nº 7	13	72	Regular	
Estación geomecánica Nº 8	14	69	Regular	
Estación geomecánica Nº 9	8	89	Buena	
Estación geomecánica Nº 10	13	72	Regular	
Estación geomecánica Nº 11	13	72	Regular	
Estación geomecánica Nº 12	10	82	Buena	
Estación geomecánica Nº 13	9	85	Buena	

Fuente: Elaboración propia

Caso aplicativo: Estación Geomecánica Nº 2

- Cálculo del Índice RMR y
 Clase del macizo rocoso
- El RMR para esta estación geomecánica es de 66, Roca Tipo II de buena calidad para lo cual se reforzará el sostenimiento.

VALORACIÓN DEL MACIZO ROCOSO (R.M.R.)													
PARAMI	ETRO	RANGO DE VALORES						١	VALOR				
R. COMPRE. UNIAXIAL (Mpa.)		Γ	>250 (15)		100-250		50-100		25-50		<25(2) <5(1)	1	1 12
				X	(12)		(7)		(4)		<1(0)	1	
RQD %		Γ	90-100		75-90		50-75		25-50		< 25	2	13
		L	(20)		(17)	Х	(13)		(8)		(3)	_	15
ESPACIAN	Л. (m)	l	> 2		0.6 - 2	x	0.2-0.6		0.06-0.2		<0.06	3	10
	(,	L	(20)		(15)	Ĺ	(10)		(8)		(5)	Ĺ	
CONDICIÓN DE JUNTAS	PERSIS.	l	<1m	X	1-3m		3-10m		10-20m		>20m	4	4
		╀	(6)	L	(4)		(2)		(1)		(0)	A	
	ABERT.	l	Cerrada		<0.1mm	X	0.1-1mm		1-5mm		>5mm	4	4
		L	(6)		(5)		(4)		(1)		(0)	В	
	RUGOS.	l	Muy	x	Rug.		Lig. Rug.		Lisa		Espej. De	4	5
		L	Rug. (6)	Ľ	(5)	L	(3)		(1)		Falla (0)	C	
	RELLEN.	l	Limpia	X	Duro		Duro		Suave		Suave	4	4
		L	(6)	L	<5mm (4)		>5mm (2)		<5mm (1)		>5mm (0)	D	·
	ALTER.	X	Sana		Lig. Alt.		Mod. Alt.		Muy Alt.		Descomp.	4 E 6	6
	ALIEN		(6)		(5)		(3)		(2)		(0)		U
AGUA SUBTERRANEA		×	Seco		Humedo		Mojado		Goteo		Flujo	5	10
		Ĺ	(15)		(10)		(7)		(4)		(0)	_	10
AJUSTE ORIENT. DE DISCONTINUIDADES		l	Muy Fav.	x	Fav.		Regular		Desfav.		Muy Desfav.	6	-2
		(0)		_	(-2)		(-5)		(-10)		(-12)	Ĭ	
VALOR TOTAL RMR (SUMA DE VALORACIÓN DE 1 AL 6)								66					
CLASE DE MACISO ROCOSO													
RMR			100-81		80-61		60-41 40-21 20-0		20-0		п		
DECCRIPCIÓN			I MUY		II		III		IV		V		"

BUENA

BUENA

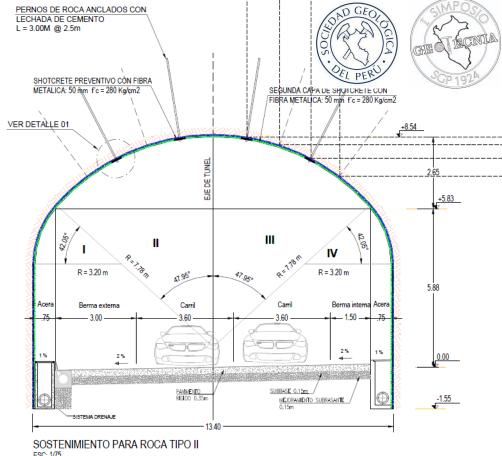
REGULAR

MUY MALA

DESCRIPCIÓN

Se obtuvo los siguientes resultados, de acuerdo a ello se determinó el tipo de sostenimiento.

Tabla Nº 12. Cálculo del Índice RMR y Clase del macizo rocoso por estación geomecánica.


ESTACIONES GEOMECÁNICAS	Índice RMR	Clase de Macizo Rocoso
Estación geomecánica Nº 1	54	III - REGULAR
Estación geomecánica Nº 2	66	II - BUENA
Estación geomecánica Nº 3	65	II - BUENA
Estación geomecánica Nº 4	55	III - REGULAR
Estación geomecánica Nº 5	54	III - REGULAR
Estación geomecánica Nº 6	65	II - BUENA
Estación geomecánica Nº 7	66	II - BUENA
Estación geomecánica Nº 8	58	III - REGULAR
Estación geomecánica Nº 9	67	II - BUENA
Estación geomecánica Nº 10	66	II - BUENA
Estación geomecánica Nº 11	59	III - REGULAR
Estación geomecánica Nº 12	67	II - BUENA
Estación geomecánica Nº 13	69	II - BUENA

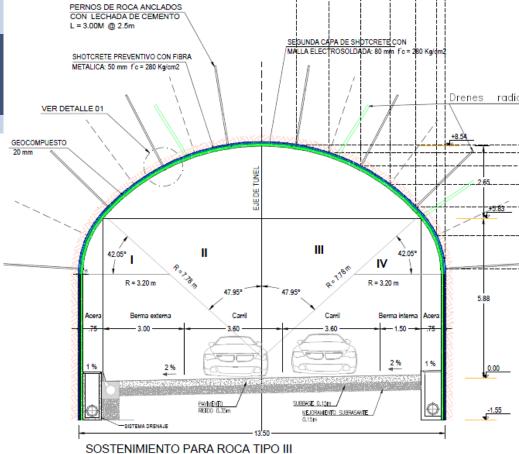
Fuente: Elaboración propia

4.4 TIPO DE SOSTENIMIENTO

SOSTENIMIENTO PARA ROCA TIPO II

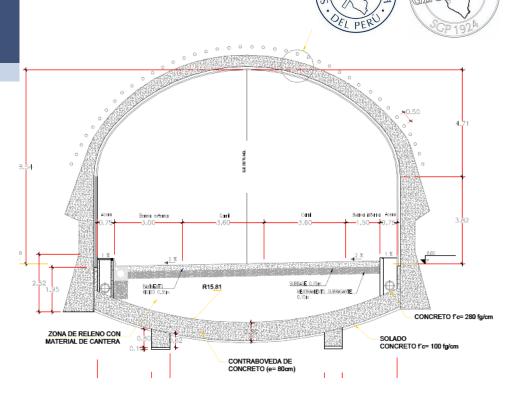
- Pernos de roca anclados con lechada de cemento L=3.00m @ 2.5m.
- Shotcrete con fibra metálica 50 mm f'c=280 kg/cm2 (dos capas)

ESC: 1/75


4.4 TIPO DE SOSTENIMIENTO

SOSTENIMIENTO PARA ROCA TIPO III

- Pernos de roca anclados con lechada de cemento L=3.00m @ 2.5 m.
- Shotcrete con fibra metálica 50 mm y 100 mm f'c=280 kg/cm2 capas)



4.4 TIPO DE SOSTENIMIENTO

SOSTENIMIENTO PARA SUELO

 Pernos autoperforantes sistema paraguas de 12.00m @9.00m

EJE 01 IZQUIERDA KM 42+640 AL KM 42+85

4.5 Método de construcción

El método será de perforación y voladura a media sección en los tramos donde se presente roca

tipo II y tipo III.

El eje a partir de la progresiva 42+640 hasta la 42+855.60 presenta una excavación en suelo por lo que se propone una excavación por método belga o método de Madrid debido a la poca cobertura existente y la presencia de Sitios Arqueológicos aledaños al proyecto.

4.6 Ventilación

- La ventilación será forzada:
- Etapa Constructiva: suministrará aire en los 20 frentes de ataque
- Etapa Funcionamiento: Consta de 11 chimeneas y ventiladores
 - Tipo chorro (longitudinal)
 - Tipo extractor en las chimeneas (semitransversal)

5

EVALUACIÓN DEL PROYECTO

La inversión del proyecto será la siguiente:

Descripción técnica	Costo Total	Costo Total Costo por Km.			Indicadores Económicos (Millones de US \$.)			
		,	VAN	TIR	B/C			
Construcción de la Autopista Puente Los Ángeles – Puente Ricardo Palma, con un espesor de Losa de Concreto de 350 mm, con base granular de 150 mm, en los Túneles y accesos de salida; con trazo de dos Ejes (Izquierdo y Derecho) con un ancho de calzada de 7.20 m cada uno, bermas de 3.0 m en cada eje y una longitud total promedio de 14.641 kms.	2,320.982 Millones S/. 718.570 Millones US\$	155,341.77 Miles S/. 47,768.07 Miles US\$	20.318	8.3%	1.04			

VÍDEO

PROYECTO

