

The physiographic and tectonic setting of Andean highsulfidation epithermal gold-silver deposits

Thomas Bissig, Amelia Rainbow, Allan Montgomery, Alan Clark

Thanks to students and collaborators too numerous to mention on a slide. Thanks also to industry partners who funded research on HS systems over the years, most importantly **Barrick** but also Kinross, IamGold, Eco Oro, Ventana Gold Corp.

El poeta maldito

Se entretiene tirando pájaros a las piedras

Nicanor Parra, from: Siete trabajos voluntarios y un acto sedicioso (1983)

Epithermal deposits

General character – Tectonic environment

Fig. 2 in Taylor, B. E. (2007). Epithermal gold deposits. Mineral Deposits of Canada: A Synthesis of Major Deposit-types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. W. D. Goodfellow, Special Publication 5, Mineral Deposits Division, Geological Association of Canada: 113-139.

The Andes

Oldest porphyries where rain is lowest

Absence of young porphyry deposits in N. Chile& S Peru

Yanites and Kesler 2015, Nature

Most significant high-sulfidation epithermal deposits of the Andes

All are younger than ~43 Ma, Most are younger than 17 Ma!

Cf. Many low-sulfidation deposits, e.g., Fruta del Norte, Deseado Massif, El Peñón are > 52 Ma to as old as Jurassic

Peak Hill, an Ordovician High-Sulfidation deposit, MacQuarie arc, Australia

Deformed, kaolinite converted into pyrophyllite

Early Archean Epithermal Veins, North Pole, Western Australia

Thus, under special circumstances, really old deposits emplaced at shallow levels can be preserved over a really long time

One way of preserving a porphyry deposit...

Titling-extensional tectonics: Yerington, Nevada (SW US!)

Dilles & Proffett, 1994

Flat landscape and gold: Tambo, El Indio belt

Landscape elements from Bissig et al. 2002

Topography and planar landscape elements El Indio/Tambo, Chile

Elevation (m)

High : 6107

Low: 1775

Landscape elements from Bissig et al. 2002

Examples of well endowed high-sulfidation epithermal deposits

Veladero (~12.2 Moz Au)

Pascua-Lama (~17.6 Moz Au)

Landscape elements from Bissig et al. 2002, Charchaflie et al. 2007

Voluminous volcanism from Oligocene to middle Miocene

Reduction of volcanism at ~ 14 Ma

Isolated centers between 13 y 5 Ma. Gradual transition from andesite to dacite and rhyolite Mineralization during this time!

Youngest event: Rhyolite of 2 Ma. (post mineral)

Bissig et al. 2001, Winocur et al. 2014 and references therein

Vertical zoning in El Indio belt depending on age and elevation

Alteration assemblages

High-T, potassic, tourmaline, andalusite

Intermediate-T,topaz, zunyite, pyrophyllite, sericite, alunite

Low-T hypogene quartz-alunite Low-T. steam-heated alunite, kaolinite, vuggy quartz, native S

Mineral Deposit Research Unit

Veladero Geology

Steam heated zone

Amable pit

1 km

deposit, implies large vadose zone, dry climate

Mineral Deposit Research Unit

Erosion and hydrothermal activity, Veladero (Filo Federico) to Pascua

Lagunas Norte: Erosion during mineralization

Montgomery 2012

Low : 2275

Lagunas Norte Area, Peru

Montgomery 2012

Yanacocha/Sipan/Tantahuatay/La Zanja Area, Peru

Yanacocha, largest Au mine in world (~2001-2006)

- Mined >30 Million troy oz of a 50 Million tr oz (1500 t) Au resource in low grade (0.5-1 g/t Au) quartz-alunite (high sulfidation) oxidized epithermal deposits
- Value ~\$50 B
- Deeper sulfide-bearing porphyry Cu-Au resource with advanced argillic alteration (covelliteenargite-pyrite) contains > 5 M t Cu
- Value ~ \$30 B.

Yanacocha, Peru; 7 Ma of magmatism; 5 Ma of Au(Cu) mineralization Decreased magmatic volumes, increased SiO₂, increased HS Au with time

California-Vetas district Colombia

Paleosurface

View from Angostura down the La Baja Trend

Flat landscape at 3500-3700 m a.sl.

Mod from Rodriguez 2014

La Bodega/La Mascota/Angostura Area, Colombia

Slope (Degrees) 0 - 16

High elevation paleosurface incised by steep drainages

To date no igneous rocks contemporaneou s with mineralization known from the district

730000

70000

740000

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 7,000 7,500

Distance (m)

Erosion during hydrothermal activity: favorable for mineralization

Depth of emplacement of porphyry and implications for epithermal deposits

Scenario 1: Stratovolcano, shallow intrusion

Sector collapse/erosion

High-sulfidation eptihermal deposits form in two stages: 1. Ground preparation

Shallow exsolution of low density vapor

Contraction of the second seco

Heinrich et al., 2004

2. Mineralization

Magma exsolves higher density vapor at greater depth.

Heinrich et al., 2004

Scenario 2: Deep intrusion, no volcano

High-density vapor Capable of transporting Au

Vapor must condense into aqueous liquid and physically separate from the porphyry (that's where the structure comes in).

Scenario 3: Multi stage, porphyry and epithermal (e.g., Yanacocha)

Several overprinting porphyry intrusive events over several Ma

Overprint vs. Telescoping

Example La Pepa, Maricunga belt

Au mineralized quartz-alunite ledges are 0.5 Ma younger than porphyry (overprint)

At Refugio and Cerro Casale, for example, alunite and porphyry are indistinguishable in age (telescoping), there, quartz-alunite ledges are barren.

Conclusions 1

- Deposits are commonly located near age equivalent incising lower elevation landforms (valleys and pediments)
- Geomorphology indicates uplift and erosion concurrent with mineralization.
- Erosion lowers water table at back-scarp and may stimulate boiling and fluid mixing leading to ore formation.
- Mineralization mostly post dates volcanism, in some cases by 100's of Ma

Conclusions 2

Stratovolcanoes? Probably not a good host for high-sulfidation epithermal deposits (but maybe for porphyry Au-Cu).

Look for the porphyry below the high-sulfidation deposit? Yes, there may be one, but it is probably >3 km deep, unless there is indication of several overprinting systems.

Long term preservation of high-sulfidation deposits only possible if favorable structural evolution (protected from erosion somehow).

Low-sulfidation deposits in the Andean context are more likely to be preserved over time due to extensional regime and cover by younger sediments.

References

- Bissig, T., Lee, J.K.W., Clark, A.H., Heather, K.B., 2001. The Cenozoic history of volcanism and hydrothermal alteration in the central Andean flat-slab region: New ⁴⁰Ar-³⁹Ar constraints from the El Indio-Pascua Au (-Ag, Cu) belt, 29° 20 '-30° 30 ' S. Int Geol Rev 43, 312-340.
- Bissig, T., Clark, A.H., Lee, J.K.W., Hodgson, C.J., 2002. Miocene landscape evolution and geomorphologic controls on epithermal processes in the El Indio-Pascua Au-Ag-Cu belt, Chile and Argentina. Econ Geol Bull Soc 97, 971-996.
- Charchaflie, D., Tosdal, R.M., Mortensen, J.K., 2007. Geologic framework of the Veladero high-sulfidation epithermal deposit area, Cordillera Frontal, Argentina. Econ Geol Bull Soc 102, 171-192.
- Holley, E.A., 2012. The Veladero high-sulfidation epithermal Au-Ag deposit, Argentina: Volcanic stratigraphy, alteration, mineralization, and quartz paragenesis. Unpublished PhD thesis, Colorado School of Mines, Golden, Colorado, 226 p.
- Longo, A.A., Dilles, J.H., Grunder, A.L., Duncan, R., 2010. Evolution of calc-alkaline volcanism and associated hydrothermal gold deposits at Yanacocha, Peru. Econ Geol 105, 1191-1241.
- Montgomery, A.T., 2012. Metallogenetic controls on Miocene high-sulphidation epithermal gold mineralization, Alto Chicama district, La Libertad, northern Perú. Unpublished PhD thesis, Queen's University, Kingston, Ontario, Canada, 381 p.
- Murakami, H., Seo, J. H., & Heinrich, C. A. 2010. The relation between Cu/Au ratio and formation depth of porphyrystyle Cu–Au±Mo deposits. Mineralium Deposita, 45, 11-21.
- Rainbow, A. 2009. Genesis and evolution of the Pierina high-sulphidation epithermal Au-Ag Deposit, Ancash, Perú. Unpublished PhD thesis, Queen's University, Kingston, On, Canada, 277 p.
- Winocur, D.A., Litvak, V.D., Ramos, V.A., 2014. Magmatic and tectonic evolution of the Oligocene Valle del Cura basin, Main Andes of Argentina and Chile: evidence for generalized extension. Geological Society of London Special Publication 399, doi:10.1144/SP399.2

