




Curso

Hidrología Isotópica aplicada a la minería

05 - 08 Noviembre 2019

Teoría: Martes - Viernes De 4:00 PM - 8:30 PM

CATEGORIA	HASTA 16/10/2019	DESDE 17/10/2019
General	S/. 400.00	S/. 600.00
Socios	S/. 350.00	S/. 550.00
Estudiante	S/. 200.00	S/. 400.00
Socio Estudiante	S/. 150.00	S/. 350.00

Instructor: Ph. D. Germán Mallén Hidroquímico Isotópico

© 01-6281150

☑ sgp@sgp.org.pe Lugar: Av. 28 de Julio 745, Miraflores

CURSO HIDROLOGÍA ISOTÓPICA APLICADA A LA MINERÍA

El expositor cuenta con experiencia en hidrogeoquímica e isotopía para estudios ambientales en proyectos científicos, públicos y mineros desde 1995, y mostrará ejemplos y recomendaciones aplicables a muchos otros proyectos mineros en el Perú y el extranjero.

CONTENIDO DEL CURSO Y DURACIÓN

Se propone desarrollar el contenido de actividades en 04 días académicos, haciendo un total de 18 horas, de manera que presente los componentes teóricos y prácticos.

DIAS 1-2: INTRODUCCIÓN A LOS ISOTOPOS ESTABLES Y USO DE ¹⁸O-²H EN HIDROLOGÍA Y MINERÍA

- ❖ Isotopos para determinar origen y edad de aguas y solutos (naturales o antropogénicos):
 - Introducción a la isotopía
 - Isótopos radiactivos y estables habitualmente usados en la hidrología.
 - Estándares isotópicos proporcionados por la IAEA en Vienna.
 - Matemática básica de ratios y fraccionamientos isotópicos.
 - Métodos y costos de análisis isotópicos.

break

- > Isotopos estables (δ^{18} O, δ^{2} H) del aqua
 - Fraccionamientos isotópicos por diferentes procesos y efectos.
 - Causas de variaciones isotópicas a lo largo de la línea meteórica global y local (GMWL y LMWL) y de desplazamientos fuera de la línea meteórica.
 - Identificación de zonas de recarga por gradiente vertical y otros efectos.

lunch

- Uso del enriquecimiento de ¹⁸O_{H2O} en embalses y relaveras para detectar y cuantificar filtraciones y mezclas.
- Intercambio isotópico, interacción roca-agua, sistemas de convección hidrotermal.
- Diferenciación entre drenaje ácido de mina y manantiales acidificados por causas naturales, basado en ¹⁸O-²H y parámetros hidroquímicos.

break

- Mezclas de aguas y solutos en minería y sistemas hidrológicos.
 - Fraccionamientos isotópicos por diferentes procesos y efectos.
 - Cálculos de porcentajes de aguas mezcladas, en base a:
 - concentraciones de iones, y/o
 - la signatura de los isotopos estables del agua (δ^2 H, δ^{18} O).

PRÁCTICA:

Ejercicios de interpretación de isótopos estables y radiactivos, casos prácticos de investigaciones realizadas en Perú y el mundo

DIAS 3-4: CÁLCULOS DE MEZCLAS DE AGUAS E IONES, BASADO EN CONCENTRACIONES HIDROQUÍMICAS Y RATIOS ISOTÓPICOS; DATACIÓN DE AGUAS; EJEMPLOS

- Cálculos de porcentajes de iones de diferentes orígenes basado en sus isotopos estables.
- Combinación de cálculos de mezclas de dos componentes basado en datos químicos e isotópicos, hasta deducir las características de un componente de mezcla no directamente accesible.
- Cálculo y estimación de errores.

break

- Aplicación de los isotopos estables ³⁴S, ¹⁸O, ¹⁵N y ³⁷Cl para evaluar mezclas de SO₄²⁻, NO₃- y Cl⁻ de diferentes orígenes (litológicos, industriales, domésticos).
- Drenaje ácido (ARD/ML).
- Identificación de procesos redox que influyen en la composición isotópica del SO₄²⁻.
- Modelamiento de mezclas en PHREEQC.

lunch

- Ejemplos de estudios isotópicos-hidroquímicos combinados.
 - Evaluar o descartar filtraciones de relaves.
 - Evaluación de aguas subterráneas saladas con métodos geotermométricos.

break

- Datación de aguas con isotopos radiactivos (3H y 14C):
 - Rangos de edades y limitaciones.
 - Diferencias latitudinales de concentraciones de ³H.
 - Métodos y costos de análisis.
 - Datación con ³H en secciones horizontales y verticales, y en series de tiempo, verificación con parámetros hidroquímicos (ej. Ticlio y Los Bronces).
 - Variaciones de δ^{13} C en atmosfera y compuestos naturales.
 - Fraccionamientos de ¹³C entre CO₂ y HCO₃⁻.
 - Correcciones del ¹⁴C por ¹³C y otros parámetros.
 - Inaptitud del ¹⁴C de DIC o DOC para datar aguas subterráneas, contrario a la datación mucho más precisa de C_{org} sólido.

LOGRO:

Al final del curso el participante conoce los isotopos usados en hidrología y minería, en combinación con parámetros hidroquímicos, las bases matemáticas, y los métodos y costos analíticos. Los abundantes ejemplos mostrarán en qué situación y ubicación usar cuál isotopo para solucionar problemas hidrogeológicos e hidroquímicos, e.g. identificar y cuantificar filtraciones de relaves, lagunas, botaderos, etc. en mezclas con aguas subterráneas o superficiales nativas, y evaluar rangos de errores en los cálculos. El participante entenderá como usar los isotopos estables y radiactivos para evaluar origen, mezclas y edad de aguas y solutos (naturales o antropogénicos), y procesos que influyen en la calidad y composición isotópica de las agua.

INVERSIÓN:

Costo de Inscripción	Hasta 16 octubre	Desde el 17 de octubre
Profesionales	400	600
Profesionales Socios	350	550
Estudiantes	200	400
Estudiantes Socios	150	350

EXPOSITOR:

Dr. Germán Mallén, Hidroquímico Isotópico - Hidrogeólogo Senior

Hidrogeoquímico con experiencia laboral como doctorante y postdoc en investigaciones hidrogeoquímicas, isotópicas e hidrológicas en Alemania (1995-2004) y como consultor para estudios de línea base, factibilidad, EIA y hasta cierre de minas en Latinoamérica desde 2006, incluyendo: procesos redox, de mezcla y equilibración; interacción roca-agua; modelación hidroquímica (PHREEQC); origen y edad de aguas subterráneas y solutos naturales y/o antropogénicos y su transporte y transformación; detección y cuantificación de filtraciones de relaves, lagunas y ríos basado en parámetros hidroquímicos e isotópicos; análisis de calidad de agua para diferentes usos (consumo humano/ animal, riego, efluentes mineros) según normas nacionales e internacionales; diferenciación de drenaje ácido natural y antropogénico por oxidación de H2S(g)↑ o FeS2; geotermometría en sistemas de convección hidrotermal; geoquímica ambiental (pruebas estáticas y cinéticas) para predicción de ARD/ML y separación de desmontes (PAG, No-PAG y aptas para construcciones y coberturas). Actualmente trabaja en la empresa Water and Enviromental Services (WES) y como docente de pregrado en la UPC, curso "Gestión de recursos de agua en minería".

Germán Mallén

PhD. en Hidrogeoquímica e Isótopos aplicados a la hidrogeología, en aguas superficiales y subterráneas con más de 20 años de experiencia en proyectos de investigación en Perú, Chile, Paraguay y Alemania.

Amplia experiencia en proyectos de investigación para actividades mineras, sobretodo en la determinación de origen, transporte y transformación de constituyentes naturales y/o antropogénicos en sistemas de flujo; detección y cuantificación de filtraciones de relaves en base a parámetros hidroquímicos e isotópicos; procesos redox de mezcla y equilibración; interacción rocaauua; modelación Hidrogeoquímica

Experiencia

2015 - 2016 / 2017 — Actualidad Hidrogeoquímico— WES Perú SAC

2017

Hidrogeoquímico – Golder Associates Perú S.A.C.

2013 - 2014

Jefe de Proyecto/ Hidrogeoquímico – MWH – Chile 2007 - 2013

Hidrogeoquímico – MWH –Perú

2006-2007

Hidrogeólogo e Hidroquímico de proyectos

- Water Management Consultants Perú

INFORMES:

Email: sgp@sgp.org.pe Teléfono: 628-1150 Web: www.sgp.org.pe